
Interactive Visualization and On-Demand Processing of Large
Volume Data: A Fully GPU-Based Out-Of-Core Approach.

Jonathan Sarton - Nicolas Courilleau - Yannick Remion - Laurent Lucas

CReSTIC – Université de Reims Champagne-Ardenne – France
ICube – Université de Strasbourg – France



Introduction



Background and motivations

2

Large volume data, how to

• interactively visualize them
• process them on-the-fly ?

→ interesting to use GPUs !



Background and motivations

3

Large volume data, how to

• interactively visualize them
• process them on-the-fly ?

→ interesting to use GPUs !

Issue : memory occupation
• Large datasets
• � GPU and CPU physical memory !
• Interactive manipulation complicated

→ Elaborate out-of-core algorithms



Out-of-core data access

4

GPU data cache
+

Octree Or Multi-resolution
Page Table

[Crassin et al., ACM
SIGGRAPH i3D, 2009]

Gigavoxels

[Hadwiger et al., IEEE SciVis 2012]



Out-of-core data access

5

GPU data cache
+

Octree Or Multi-resolution
Page Table

Better for very large volume !!

[Crassin et al., ACM
SIGGRAPH i3D, 2009]

Gigavoxels

[Hadwiger et al., IEEE SciVis 2012]



Data representation and storage

6

Level 2

Level 1

Level 0

• Multi-resolution: to choose the desired level of detail
⇒ Reduces the amount of data



Data representation and storage

7

Level 2

Level 1

Level 0

3D mipmap
• Multi-resolution: to choose the desired level of detail

⇒ Reduces the amount of data

• Bricking: Volume subdivided into small bricks (e.g 323, 643).
⇒ Allows the out-of-core approach

Data compression with LZ4 algorithm

• Loss less

• Good compression ratio

• Real-time decompression



Multi-resolution, multi-level page table hierarchy

8



Multi-resolution, multi-level page table hierarchy

9



Multi-resolution, multi-level page table hierarchy

10

• One page = 3D coordinates of
the bloc in the next cache level
+ one flag:

• Mapped
• Unmapped
• Empty

• Implementation: CUDA
3D Textures

• Cache replacement algorithm:
Least Recently Used (LRU)



Virtual addressing

11

Normalized volume navigation → address (l, p)
- l = level of detail
- p = 3D normalized position (x , y , z) ∈ [0, 1[3

From (l, p) address, we get the corresponding 3D
voxel position into the brick cache.



Cache miss

12

Normalized volume navigation → address (l, p)
- l = level of detail
- p = 3D normalized position (x , y , z) ∈ [0, 1[3

From (l, p) address, we get the corresponding 3D
voxel position into the brick cache.



Out-of-core data access

13

How to allow on-demand processing of
any part of a large volume during its visualization ?



Cache manager

1. Cache usage updates
2. Brick requests management

A GPU data structure fully managed on GPU

Advantages
• Avoids many data transfers between CPU and GPU
• Take advantage of the massively parallel environment of GPUs
• Free the CPU for other eventual processing

14



Brick request management on GPU

15

• Size = number of bricks in the multi-resolution volume
• Marked with a timestamp



CPU / GPU transfer

GPU → CPU communications
A simple list with the requested brick IDs

GPU ← CPU communications
Only the bricks ! (With CUDA Zero Copy)

16



Model in action: interactive
visualization & on-demand
processing on GPU



Out-of-core virtual miscroscope

17

Virtual miscroscope
2D multi-resolution visualization of a high resolution image stack.
Interactive navigation:

• move and zoom in a slide
• navigate through the volume from slide to slide

64 000

5
0

 0
0

0

114 x

z
y



Out-of-core virtual miscroscope

18

Virtual miscroscope ...
2D multi-resolution visualization of a high resolution image stack.
Interactive navigation:

• move and zoom in a slide
• navigate through the volume from slide to slide

+ on-demand processing
Region-growing from a voxel selected by the user
in the screen space x

z
y



Out-of-core virtual miscroscope

19

Virtual miscroscope ...
2D multi-resolution visualization of a high resolution image stack.
Interactive navigation:

• move and zoom in a slide
• navigate through the volume from slide to slide

+ on-demand processing
Region-growing from a voxel selected by the user
in the screen space x

z
y

Cache miss due to processing outside the screen space !



Out-of-core virtual miscroscope

20

Electron micorsocpy dataset
4096× 3072× 2130 8bits ≈ 27 GB
Rendering performance: ≈ 250 FPS


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Out-of-core Direct Volume Rendering

21

Ray-guided approach
• Intuitive visibility selection: no additional culling calculation
• Intuitive out-of-core integration: only load visible bricks on GPU cache



Datasets

22

Primate hippocampus
Light sheet microscope

2160× 2560× 1072 16bits ≈ 12 GB

Mouse brain
Histological scanner

64000× 50000× 114 RGBA ≈ 1.5 TB



Performances – frames frequency

23

On a single workstation
NVidia GeForce Titan X 6 GB

Dataset 1 – 12 GB Dataset 2 – 1,5 TB
0
5

10
15
20
25
30
35
40
45
50
55

47,6 49,4

F
P

S

Primate hippocampus Mouse brain



Performances – frames frequency

24

On a single workstation
NVidia GeForce Titan X 6 GB

Dataset 1 – 12 GB Dataset 2 – 1,5 TB
0

15
30
45
60
75
90

105
120
135
150
165

117,9

154

F
P

S

Primate hippocampus Mouse brain



Memory occupancy

• Primate hippocampus (2160× 2560× 1072 ≈ 12 GB)
• Brick size: 643 =⇒≈ 27000 bricks (7 LOD)
• One virtualization level
→ Need 1.2 MB on GPU

• Mouse brain (64000× 50000× 114 ≈ 1.5 TB)
• Brick size: 643 =⇒ 3.13 million bricks (10 LOD)
• One virtualization level → ≈ 63 MB needed on GPU
• Two virtualization levels → ≈ 13 MB needed on GPU

25



Conclusion



Conclusion

• Out-of-core data management: multi-resolution multi-level page table hierarchy
• Entirely managed on GPU
• GPU – CPU communication reduced
• Good rendering frequency even for very large volume of data (> TB)
• Weak GPU memory and computational footprint
• General purpose context : interactive visualization & on-demand processing

26



27

Interactive Visualization and On-Demand Processing of Large Volume
Data: A Fully GPU-Based Out-Of-Core Approach.

Jonathan Sarton - sarton@unistra.fr
Nicolas Courilleau - nicolas.courilleau@neoxia.com
Yannick Remion - yannick.remion@univ-reims.fr
Laurent Lucas - laurent.lucas@univ-reims.fr


	Introduction
	Background and motivations

	Model in action: interactive visualization & on-demand processing on GPU
	Conclusion

	fd@rm@0: 


