
Eurographics Symposium on Parallel Graphics and Visualization (2023)
R. Bujack, D. Pugmire, G. Reina (Editors)

A GPU-based out-of-core architecture for interactive visualization
of AMR time series data

W. Alexandre-Barff1 , H. Deleau1 , J. Sarton3 , F. Ledoux2 , L. Lucas†1

1 Université de Reims Champagne-Ardenne, LICIIS, LRC DIGIT, France
2 CEA, DAM, DIF, LRC DIGIT, F-91297 Arpajon, France

3 Université de Strasbourg, ICube, UMR-CNRS 7357, France

(a) Time step 60 (b) Time step 120 (c) Time step 180 (d) Time step 240

Figure 1: AMR time series visualization of the scalar volume fraction of an asteroid at four time steps. The data are averaged at 14 frames
per second (fps) and come from the original Deep Ocean Water time sequence dataset [PG17]. It consists of 269 volumes, with each volume
containing 460 × 280 × 240 voxels encoded on 128 bits (about 31 million cells). One time step requires 470MB, and for a public or high-end
GPU with respectively 4GB or 48GB, it will only be able to store 8 to 104 time steps at most (less than half of the dataset). Therefore, we
propose an out-of-core system to navigate freely and interactively in the temporal and spatial dimensions during visualization.

Abstract
This paper presents a scalable approach for large-scale Adaptive Mesh Refinement (AMR) time series interactive visualization.
We can define AMR data as a dynamic gridding format of cells hierarchically refined from a computational domain described in
this study as a regular Cartesian grid. This adaptive feature is essential for tracking time-dependent evolutionary phenomena
and makes the AMR format an essential representation for 3D numerical simulations. However, the visualization of numerical
simulation data highlights one critical issue: the significant increases in generated data memory footprint reaching petabytes,
thus greatly exceeding the memory capabilities of the most recent graphics hardware. Therefore, the question is how to access
this massive data - AMR time series in particular - for interactive visualization on a simple workstation. To overcome this
main problem, we present an out-of-core GPU-based architecture. Our proposal is a cache system based on an ad-hoc bricking
identified by a Space-Filling Curve (SFC) indexing and managed by a GPU-based page table that loads required AMR data
on-the-fly from disk to GPU memory.

CCS Concepts
• Human-centered computing → Scientific visualization;

1. Introduction

Numerical simulation is mathematical processing of real-world
complex temporal phenomena using dedicated models. It can en-
hance scientific understanding of and provide insights into the in-

† The LRC DIGIT, a joint lab between CEA-DAM Ile de France and
URCA, supports this research work. Authors would also like to thank J.
Patchett from LANL and B. Levy from INRIA for providing the dataset.

terpretation and diagnosis of these models. Among all space dis-
cretizations, AMR representation is the most suitable for time-
dependent evolutionary phenomena studies [dlAC17, KWAH06].
The AMR principle combines the simplicity of structured grids
with the advantages of local refinement to obtain a multi-resolution
hierarchy of cells. Still, interactive visualization of numerical sim-
ulation data highlights one critical issue: the significant increases
in generated data memory footprint can now reach petabytes, thus
vastly exceeding the memory capabilities of the most recent graph-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/pgv.20231080 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/pgv.20231080



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

ics hardware. Therefore, it is necessary to design scalable meth-
ods to handle large-scale data, such as i) data reduction methods
at the expense of lowering visualization quality, or ii) parallel/dis-
tributed rendering methods on HPC clusters with different load-
balancing strategies like [YMW04] or based on a kd-tree partition-
ing [LVI∗13]. On a single GPU workstation, it is common practice
to stream each time step of the dataset one by one, as proposed
by Zellmann et al. in [ZWS∗22]. However, this limits our ability
to visualize the time series as we can only view it as an "anima-
tion" from beginning to end, whereas we would like to freely nav-
igate through the spatial and temporal dimensions into the GPU
cache. Our goal is to achieve high-quality interactive visualization
of large-scale AMR time series on a simple workstation using an
out-of-core approach that can handle massive datasets from high-
performance computing devices such as current GPUs.

Contributions. In this paper, we present a cache system based
on an ad-hoc bricking scheme identified by SFC indexing. The
cache system is managed by a GPU-based page table that loads
the required AMR data on-the-fly from disk to GPU memory for
AMR time series visualization.

The remainder of this paper is organized as follows. In section 2,
we briefly review the state of the art in AMR visualization and
representation, scalable methods, time-varying AMR data manage-
ment, and SFC. The background of the data caching system we use
is discussed in section 3, before we describe our contribution in sec-
tion 4. In section 5 we briefly discuss the early rendering approach,
while in section 6 we compare our approach to existing methods.
Experimental results are then presented and discussed in section 7.
Finally, the conclusion and future work are given in section 8.

2. Related Work

AMR data visualization and representations

Many works have focused on the visualization of AMR data. There
are a few studies that are based on the use of an object-based ren-
dering method, such as [PBS02] that uses splatting, but the most
recent methods are all based on ray-tracing approaches. In this
context, we can find different methods of data representation used
for the visualization. Several approaches are based on the dual
of the mesh, such as [WHJ∗01, WKL∗01], which rely on a dual
grid for continuous interpolation. This approach was later general-
ized by [ME11]. Wald [Wal20] also uses a dual mesh representa-
tion for surface visualization. On the other hand, working directly
on the primal mesh, [KCP∗02] proposed to divide the AMR hier-
archy into equal resolution. In contrast, [WMU∗20] used a hier-
archical data representation, specifically an octree, which is well
suited for parallel ray traversal on multi-CPUs. More recently,
[WZU∗21, ZWS∗22] proposed to transform the AMR hierarchy
into a set of non-overlapping bricks, called exabrick, for GPU vol-
ume raytracing. Regarding the time-varying AMR representation,
Kaehler et al. [KPHH05] first introduce an intermediate grid hier-
archy by merging the grids of refinement levels. They then use a
clustering algorithm to induce a nested grid, and finally map the in-
termediate hierarchy using linear interpolation. However, their ap-
proach is limited to remotely accessible data with a sufficiently fast
network and the ability to store resources for data processing. Next,

Gosink et al. [GABJ08] proposed a nested hierarchy of grids with
different resolutions for temporally concurrent visualization, dis-
playing all variations of the scalar field through all time steps in a
single image. Nevertheless, they acknowledge that their method is
limited by the VRAM capacity, which requires finding a solution
to overcome this limitation.

Scalable methods for static regular grid

Scalability issues related to the visualization of massive data are
an active area of research, largely driven by various technological
advances in computing. Beyer et al. [BHP15] review some of these
developments in their report on state-of-the-art visualization, which
typically require two essential components:

• a data representation: the decomposition of the original regular
Cartesian grid into several independent sub-volumes to reduce
the size of the data to be processed.

• an addressing data structure for navigating through the data rep-
resentation: achieved through a tree traversal [CNLE09], or a
multilevel multiresolution page table [HBJP12].

Sarton et al. [SCRL20] introduce a dynamic data structure based on
a caching strategy with a virtual memory addressing system cou-
pled with efficient parallel management on the GPU to allow effi-
cient access to regular grids in interactive time. These out-of-core
approaches have already been proposed for regular Cartesian grids
with explicit hierarchical representation, without time management
considerations. Furthermore, while there exists a direct and nat-
ural relationship between the regular Cartesian grids and the data
structure in this particular case, applying this model to time-varying
AMR data is no less trivial.

Time-varying AMR data management

For time-varying AMR, Shih et al. [SZM∗14] first propose a
prefetch strategy by storing as much time step data as possible
in RAM and VRAM during visualization. Although their solu-
tion involves out-of-core methods, it requires at least one full step
to be completely stored in VRAM at a time, thus leaving the
VRAM capacity bottleneck unresolved. Subsequently, Zellmann et
al. [ZWS∗22] present a streaming approach for GPU visualization
of time-varying AMR data. Their approach is limited to static AMR
hierarchy only, and by their sequential static methods of loading an
entire single time step of data that fits in GPU memory at the time,
which limits the freedom to navigate between different time steps.
However, the approach of Zellmann et al. strengthens our prefer-
ence for out-of-core approaches to handle large-scale datasets.

Using an out-of-core approach in this context, one must be able
to address any part of the entire spatial representation of a 3D vol-
ume time series. SFCs generally have the property of mapping
multi-dimensional (3D in this study) data into one-dimensional.
Panda et al. [PMM16] present in their survey some typical applica-
tions to SFC, mainly Hilbert curves. The methods that come closer
to our needs are, Sasidharan et al.’s [SDS15] approach using recur-
sive generalized SFC to partition structured and unstructured 2D
meshes. Their applications of SFC shows potential for AMR par-
titioning, although it is limited to 2D. Then, Zhou et al. [ZJW21]

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

2



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

Figure 2: Pipeline overview. The transparent parts are similar to the work of Sarton et al. scalable approach [SCRL20]. The parts highlighted
in red (preprocessing and mass storage, time sequence brick addressing table, and the visualization application) reflect our adaptations to
manage AMR spatiotemporal datasets.

apply their solution of data-driven SFC methods to multiscale data
by finding a Hamiltonian path. However, they only consider mul-
tiscale data in an octree format. Wang et al. [WGLS05] use error-
guided load balancing based on SFC traversal applied to a hierar-
chical wavelet tree for parallel multiresolution volume rendering.
Their use of Hilbert curves is similar to ours, but for a distributed
workload across multiple GPUs. Finally, Kumar et al. [KEB∗14]
propose to improve an existing I/O multiresolution format in a par-
allel framework for AMR simulations by merging the AMR hier-
archy into a single array. Although their methods provide excellent
spatial and hierarchical localization for AMR data, their approach
does not extend to time series AMR data.

In this paper, we propose to build on the work of Sarton et
al. [SCRL20] by adapting the direct virtual addressing approach of
static regular grid to time-varying AMR data. We propose a GPU
implementation of ad-hoc SFC indexing coupled with a 2D ad-
dressing data structure that loads the AMR data from disk to GPU
memory on-demand. We apply a different SFC path per AMR re-
finement level, which is used through a GPU data structure that
allows addressing all refinement levels regardless of the time step.
We use this approach with a visualization method based on Fogal
et al.’s ray-guided volume rendering [FSK13], since it can be im-
plemented in our out-of-core architecture with little to no effort.

3. Background: GPU-based out-of-core approach

The volume ray tracing used for regular grid visualization or AMR
relies on a data sampling step inside the volume while traversing
it. On GPU, this step, which can be linear or hierarchical, requires
access to all the cells of the volume in texture memory. When the
whole volume does not fit in GPU memory, one possibility is to

rely on an out-of-core approach with a cache system to store the
data. In this kind of system, data addressing is usually done by
traversing a hierarchical structure that allows data virtualization.
Here, we propose to rely on the system presented by Sarton et al.
[SCRL20] for static regular grids. This method uses a multilevel
multiresolution page table structure introduced by [HBJP12] with
an entirely GPU-based cache management to ensure data queries
and structure update in parallel, similar to Crassin et al. [CNLE09]
for an octree. The modifications we make to the [SCRL20] pipeline
in our contribution are highlighted in red in Figure 2 and concern
the management of time-varying AMR data. Sarton et al.’s virtual
addressing steps are as follows:

1. Assume an end-user application that handles large-scale regu-
lar voxel grids and requests specific data at a 3D position within
a normalized volume defined as a pair (3D position, Level Of
Details (or LOD)).

2. virtual memory addressing is triggered, which consists of look-
ing at the address pointed to by the pair (3D position, LOD) in
the GPU addressing data structure to know if the requested
data is in the GPU data cache or not, leading to only three pos-
sible cases:

i) EMPTY: The desired data does not exist, meaning that the
end-user application is trying to reach a 3D position where
no actual data exists.

ii) MAPPED: This means that the requested data is in the GPU
data cache, so it immediately returns to the end-user appli-
cation with the requested data, and the LRU array is next
updated.

iii) UNMAPPED: This means that the desired data is not in the
GPU data cache, which triggered the creation of a requested

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

3



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

Figure 3: 2D representation of a Block-Structured AMR (BS-AMR) sequence. It consists of four time steps, each defined on four Levels Of
Detail (LOD). The BS-AMR hierarchy varies throughout the sequence, which is illustrated by the different topologies of the AMR bricks.
Each AMR brick is represented according to its LOD from coarsest to finest. In the fourth time step, a 2D normalized position is requested
and displayed in red. In this figure, Γτ

i stands for a BS-AMR at time step τ and LOD i, βτ,i,δ is an AMR brick identify by its time step τ , its
LOD i and, its SFC index δ and finally Card(Γ) determines the decomposition of a BS-AMR hierarchy per LOD. These terms are described
in detail in the section 4.1 and 4.2.

data list form of the id of the desired data from the GPU to
the CPU and is handled asynchronously to avoid bottlenecks.

Throughout the entire visualization process, a single CPU thread
processes the asynchronous request list to look up the mirroring
addressing data structure that manages the CPU cache to know if
the desired data exists. By following the same three possible cases
as the GPU counterpart, we do not change anything except the data
flow. If the desired data is in the CPU cache, it is transferred to
the GPU, and the CPU’s LRU is updated. In contrast, if the data is
not present in the CPU cache, it is loaded directly from the mass
storage. In order to load the desired data from the data represen-
tation obtained during the preprocessing step, we first check if the
CPU cache is full. If it is, we search the CPU’s LRU to find the
last requested data and swap it with the newest data. If the CPU
cache is not full, we store the newest data from the CPU cache be-
fore sending it to the GPU. Once all the cache system mechanisms
are complete, we update the GPU’s LRU with the requested data.
If necessary, we swap the last requested data with the newest data
from the CPU if the GPU‘s data cache is already full.
The approach proposed by Sarton et al. is general-purpose and al-
lows the cache update strategy to be adapted to the needs of the end-
user application, both for rendering and processing. Moreover, the
virtual memory addressing mechanism ensures that the end-user
application always requests the necessary voxel data and avoids
unnecessary loading. This approach is modular, agnostic, and suf-
ficiently generic to be adapted to any data type by first adapting the
data representation module, then the addressing data structure,

and finally the end-user application (see red highlighted parts in
Figure 2). In the next section, we discuss how we adapted these
modules for AMR time series data.

4. Adaptations to AMR time series data

In this section, we detail our contributions. After defining funda-
mental concepts, we specify how the preprocessing (Hilbert’s in-
dexing) and data addressing steps work.

4.1. Definition

We define a Block-Structured AMR (BS-AMR) [BC89, MA15] as
a nested hierarchy of structured grids, denoted by Γ. A grid of this
hierarchy represents one refinement level (LOD) and is denoted
by Γi=0...(n−1), where n is the number of LODs, ranking from the
coarsest Γ0 to the finest Γn−1. By definition, and for any LOD i> 0,
a BS-AMR satisfies the relation:

Γi ⊆ Γi−1 ⊆ Γ .

By extension, a single BS-AMR of a time series (see Figure 3) is
defined by Γτ , where τ is the time step. A refinement level for a
given time step is denoted by Γτ

i . For simplicity, in the following
definitions we will focus on a single time step of the sequence,
i.e., a single BS-AMR. Therefore, except for Γ0, each subsequent
structured grid is nested within a coarser grid with a refinement
ratio of 2. Therefore, for a single AMR brick belonging to a coarser

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

grid, there are at most 23 AMR bricks of the next finer grid nested
within it.

Moreover, we call an AMR brick (brick for short), denoted by
βi, a group of voxels (scalar data) contained in and belonging
to any structured grid, where each voxel has a spatial resolution
corresponding to its respective LOD. This brick definition is cell-
centered, which implies that a single brick belonging to any coarser
grid will store the average voxels among the nested bricks of the
next finer grid. Thus, each brick in each LOD contains the same
number of voxels, meaning it has the same memory footprint. Also,
due to the cell-centered property, the coarsest grid Γ0 is a single
brick at the top of the structured grid hierarchy that covers the en-
tire BS-AMR domain, such as:

Γ0 = β0 .

This property guarantees that we always have a return value during
the voxel request for the end-user application.

To describe the topology of our BS-AMR definition, i.e., the
AMR hierarchy, we introduce the following notation: Card(Γi) de-
notes the number of bricks within a given structured grid. Similarly,
we denote by Card(Γ) an array of integers representing the number
of bricks within each structured grid of a BS-AMR from the coars-
est to the finest LOD, such that:

Card(Γ) = {Card(Γ0), ...,Card(Γn−1)} with Card(Γ0) = 1.

4.2. Preprocessing

This step is responsible for converting regular Cartesian grids into
a BS-AMR sequence that represents each individual time step of
the dataset. Our preprocessing step generated BS-AMR with a set
of bricks that always contained the same number of voxels with
different spatial resolutions but the same memory footprint. This
ensured a constant algorithmic time to load the bricks into the GPU
memory.

We then use an SFC path to address them uniquely and individu-
ally. Defined in a unit cube, this 3D SFC allows us to convert - as a
mapping function - the central 3D position of the brick into a single
SFC index, denoted by δ , which is related to the order of its SFC
traversal. We use Hilbert’s curve here because of its property of
preserving the locality distance between nearby points [DCOM00].
Since Hilbert’s path is sensitive to domain resolution (see Figure 4
for a 2D indexing), we apply a different Hilbert ordering path ac-
cording to each LOD i for i = 1...(n−1), such that each brick be-
longing to any Γi has an index SFC δi:

δi ∈ {1, ...,23∗i} with δ0 = 1.

In our study, we focus only on the BS-AMR sequence, where each
BS-AMR has the same spatial dimension throughout the sequence.
Therefore, the same Hilbert ordering path is used for the whole
sequence.

As a result of this operation, a single brick β is identified by the
expression:

βτ,i,δ ,

where τ indicates the time step, i the LOD, and δ the SFC index.

(a) Card(Γ3) = {1,1,3,3} (b) Card(Γ3
1) = {1}

(c) Card(Γ3
2) = {3} (d) Card(Γ3

3) = {3}

Figure 4: 2D Space-Filling Curve (SFC) indexing of a single BS-
AMR. (a) The result of SFC’s indexing for the fourth BS-AMR of
the sequence from Figure 3, where we have applied (b) a first, (c)
then a second, (d) and a third order Hilbert curve for subsequent
nested structured grids according to their LOD along their respec-
tive topology. The 2D normalized position is always requested at
the finest available LOD, shown in red.

At the end of our preprocessing step, we store each brick scalar
value into individual file I/Os identified by their respective time
step, LOD, and SFC index. It is these file contents that are asyn-
chronously uploaded to the CPU all the way up to the GPU during
our out-of-core mechanism. Thus completing our data represen-
tation for AMR time series data.

4.3. Addressing data structure

In this section, we present the atomic form of our addressing data
structure, then as a whole, before giving a step-by-step example of
virtual addressing.

Brick addressing table architecture

The main component of our addressing data structure is the Brick
Addressing Table (BAT), as shown in Figure 5. Noted Bτ , a BAT is
defined as an array of bricks obtained from a single BS-AMR Γτ ,
with a size equal to the number of bricks found per LOD i.

Data in Bτ are naturally ordered in ascending order from coars-
est to finest LOD i. In addition, all bricks are organized similarly
by their respective SFC index δ such that ∀βi=0...(n−1) ∈ Bτ and

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

5



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

∀δ ∈ {1, ...,23∗i} with,

βτ,i ≺ βτ,i+1

βτ,i,δ ≺ βτ,i,δ+1 .

Once we create a Bτ for each time step τ of the BS-AMR sequence,
we use an upper level of our addressing data structure to handle
the collection of Bτ along with the data cache management.

Figure 5: Brick addressing table (BAT) of a single BS-AMR. The
corresponding BAT for the fourth BS-AMR of the sequence in Fig-
ure 3 (denoted by B3). Each AMR brick is sorted by its LOD, with
the coarsest value first, and then by its SFC index, with the small-
est value first. This BS-AMR representation allows us to reduce any
AMR hierarchy to a one-dimensional array. The 2D normalized po-
sition is converted into 2D coordinates in the corresponding AMR
brick, shown in red.

Time step brick addressing table architecture

Similarly, we call our virtual memory addressing data structure
the Time Step Brick Addressing Table (TS-BAT), as shown in Fig-
ure 6. We can think of the TS-BAT as an upper level of the data
cache. We define the TS-BAT architecture as a 2D array of entries
of time-ordered Bτ on the Y-axis, such as Bτ ≺ Bτ+1, and on the
X-axis, such as:

max
τ

(
n

∑
i=0

Card(Γτ
i )) .

Each entry in the TS-BAT represents a single brick βτ,i,δ in
the entire BS-AMR sequence and stores a pair (cachePos, f lag),
where cachePos is a 3D position pointing to the address of
the brick’s voxels βτ,i,δ stored in the data cache and f lag ∈
{MAPPED,UNMAPPED,EMPTY}. These f lag indicate the follow-
ing states:

• If f lag = MAPPED, the requested brick is already in the data
cache. We send the voxel back to the end-user application be-
fore updating the LRU.

• If f lag = UNMAPPED, the asynchronous request buffer is sent
to the CPU to load the requested brick from the system or mass
memory.

• Otherwise, the end-user application tries to reach a position
without scalar data.

Virtual addressing

To obtain the value of a given voxel, the end-user application
sends a 3D normalized position in the data for a given time step to
our virtual memory addressing data structure. Any 3D normal-
ized position at any time step belonging to the BS-AMR sequence
will go through the same following steps, here illustrated in 2D ac-
cording to the red spot from Figure 3 to Figure 6.

Figure 6: Time step brick addressing table (TS-BAT) of a BS-
AMR sequence. The TS-BAT corresponds to the sequence shown
in Figure 3, where each row represents the BAT of each time step
in ascending order from top to bottom, and the entries are sorted
according to their respective BAT order in a given row. This TS-
BAT has four rows, corresponding to the number of time steps in
the sequence, and as many columns as the largest size of all BATs
(B3 in this example). The remaining entries of all other smaller
rows are not assigned, resulting in a sparse matrix architecture.
The AMR brick corresponding to the 2D normalized position re-
quested is shown in red.

1. Virtual addressing starts from a 2D normalized position re-
quested during a given time step (the fourth time step τ = 3
in this example), shown in Figure 3.

2. We then compute the finest LOD available for the corresponding
time step (τ = 3) to always ensure the finest possible value. Oth-
erwise, we send the corresponding value in the coarsest LOD to
ensure that we always find a minimum value. Once the LOD is
found (i = 2 in this example), we then compute the SFC index
of the corresponding brick (δ = 9 in this example), shown in
Figure 4.

3. We search in the BAT of the corresponding time step (τ = 3) to
get the offset (2 on the X-axis) and compute the 2D coordinate
in the brick to get the corresponding voxel coordinate shown in
Figure 5.

4. Finally, we look in the TS-BAT at the corresponding row for
the given time step (fourth row) and the computed offset (third
column) to retrieve the entry corresponding to the brick (β3,2,9
in this example) that contains the requested voxel shown in Fig-
ure 6.

Once all these steps are done, we either return the voxel value from
the data cache if the entry is MAPPED, or send an asynchronous
request list to the CPU to load the missing brick if the entry is
UNMAPPED. Except for the steps mentioned above, the rest of the
original out-of-core mechanism [SCRL20] remains the same. From
the asynchronous request sent to the CPU, to the CPU memory
management mirrored by the GPU counterpart. We then identify
the requested brick file I/O within our data representation by its
time step, LOD, and SFC index (which in this example are τ = 3,
i = 2, and δ = 9) before sending it back to the GPU.

However, unlike [SCRL20], we deal with hierarchical multires-
olution data, which affects direct virtual addressing. Thus, we use

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

6



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

Hilbert’s code to bypass the direct addressing approach. Further-
more, we reduce the AMR hierarchy to a one-dimensional array
with our BAT architecture to navigate the temporal dimension in
our 2D TS-BAT architecture.

5. Rendering

Our end-user application provides a classic ray marching loop to
compute the absorption and emission model, based on Max’s equa-
tion [Max95]. It’s a simple Direct Volume Rendering (DVR) pro-
gram using CUDA to solve the absorption and emission equation.
The rendering algorithm works front-to-back, allowing early-ray-
termination when the ray’s opacity exceeds a given threshold. We
cast one ray per pixel on the image plane intersecting our volume
data, and for each ray, we compute the intersection pair (t0,t1) with
Γ0. Then, we evaluate each 3D position within the volume, starting
from t0 and stepping by samples, until we reach t1 or an opaque
computed opacity according to the early-ray-termination. To eval-
uate each 3D position in the volume, our rendering method adopts
the scalable GPU-based ray-driven volume rendering approach of
Fogal et al. [FSK13]. The Fogal approach is based on the observa-
tion that the data required for visualization is usually smaller than
the full data set. Therefore, it provides an efficient way to reduce
the working set of large datasets by exploiting optimal brick sizes.
Brick size has a significant impact on empty space skipping meth-
ods, especially those based on domain decomposition into bricks.
Smaller brick sizes improve empty space skipping while avoiding
I/O exchanges. Fogal et al. found that a 64³ voxel brick size pro-
vides an optimal tradeoff [FSK13]. Their approach can be summa-
rized as follows:

1. calculate the LOD of the 3D position along the ray
2. identify which brick to fetch from the GPU
3. look-up in the addressing data structure the status of the re-

quested brick:

• if empty, skip the brick and continue ray-casting;
• else if non-empty and present, we can ray-cast directly with

that data;
• else (if non-empty and absent), we report the misses to the

GPU addressing data structure to trigger the fetch from the
CPU side. Then we return the coarser value of the desired
brick.

Our scalable approach is easily integrated into the overall pro-
cess. It fits seamlessly into the out-of-core architecture by replacing
the addressing data structure with ours and prioritizing the compu-
tation of the highest resolution LOD. Moreover, during the sam-
pling phase, our approach does not require normalized access to
the GPU texture to fetch voxel data from the data cache, since our
BS-AMR format is cell-centered. In fact, direct access to the 3D po-
sition inside the brick is fast, coupled with the use of a voxel cover-
age of one in each direction for each brick to avoid brick boundary
artifacts. The focus of this paper is to demonstrate the viability of
our framework for handling large-scale AMR time series data as a
rudimentary visualization end-user application. Therefore, its data
traversal and sampling optimization are unrelated to the validation
of our primary contribution. Second, although we have chosen a
visualization purpose, this rendering module can also be integrated

with other processing modules. Finally, this rendering approach can
be added to scientific visualization tools such as VTK’s Paraview,
as well as other APIs such as OSPRay, OptiX, or IndeX to provide
hardware-accelerated ray tracing support. In the long run, integra-
tion with Omniverse is feasible, but deployment on such a platform
is beyond the scope of this paper.

6. Comparison with existing method

Zellmann et al.’s [ZWS∗22] GPU streaming framework for visual-
izing time-varying AMR data is the closest approach to ours. In-
deed, our solutions visualize large-scale time-varying AMR data
with a scalable approach. Both of our approaches enable interac-
tive time visualization with good overall visual quality.

In particular, the management of GPU memory allocation is dif-
ferent between our approaches. Zellmann et al. ensure that the data
for each time step fits completely into GPU memory, while we load
only the data necessary for sample rendering into GPU memory,
resulting in a much smaller memory footprint. In addition, Zell-
mann’s approach is limited to static AMR hierarchies and focuses
only on changes in scalar values throughout the sequence, while our
approach can handle dynamic AMR hierarchies using our 2D ad-
dressing data structure and unique brick addressing. Finally, due to
the streaming method, Zellmann is limited to navigating between
temporally coherent data, while our solution allows non-coherent
AMR data to be loaded side-by-side.

We limit our comparison with the solution in [ZWS∗22] to a
methodological point of view, since both methods deal with the
same type of data, but with a different focus on memory manage-
ment. Zellmann et al. optimize the GPU/disk exchange, while we
focus on a more dynamic management of the data from a spatial
and temporal point of view, without considering the exchange op-
timization. Furthermore, to the best of our knowledge, there are no
other methods besides Zellmann et al. that deal with exactly the
same type of large-scale data for interactive visualization on a sin-
gle GPU.

7. Experimental results

All testing was performed on an NVidia RTX A4000 Mobile with
8GB of VRAM, an 8-core 11th Gen Intel Core i7-11850H 64-bit
CPU, with 32GB of RAM, and CUDA 11.7 to render in a Full HD
1920 × 1080 viewport.

We used two datasets defined as a sequence of:

• Dataset 1: 269 volumes of 460 × 280 × 240 voxels encoded
on 128 bits (4 scalar fields - material Id, temperature, volume
fraction of water, and volume fraction of asteroid). It represents
the study of asteroid impacts in deep ocean water [PG17]. This
sequence has been refined with a 4 level of refinement, and each
brick has 64³ voxels.

• Dataset 2: 311 volumes of 1000 × 1000 × 1000 binary vox-
els representing a free-surface fluid simulated by a semi-discrete
partial optimal transport algorithm [Lév22]. This sequence has
been refined up to 5 levels to ensure the same brick size as
Dataset 1, i.e. 64³ voxels each.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

7



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

Figure 7: Visualization Interface from Dataset 1.

(a) Γ180
0 (lowest resolution LOD) at

1000 fps
(b) Γ180

1 at 606 fps (c) Γ180
2 at 250 fps (d) Γ180

3 (highest resolution LOD) at
17 fps

Figure 8: Visualization of Γ180 at different resolution (from coarse to fine) from Dataset 1.

(a) Γ50
2 at 62 fps (b) Γ100

2 at 71 fps (c) Γ150
2 at 71 fps (d) Γ200

2 at 62 fps

Figure 9: Visualization of a sequence of 4 time steps from the binary Dataset 2 in the most visible resolution.

Figure 7 shows the user interface of our visualization applica-
tion. We chose to display essential information such as the cur-

rent rendering’s fps, cache used percentage to track the GPU’s data
cache usage, and the application’s average time to render a single

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

8



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

Dataset Protocol Data Cache Mean Median Range CV

1: 460 × 280 × 240 × 269 voxels encoded on 128bits of 4 scalar fields 1 COLD 124.61ms 114.38ms 112.93ms 27.57%
Study of asteroid impacts in deep ocean water HOT 81.43ms 84.54ms 79.53ms 21.02%

Total size: 124GB (31 million cells per time step) 2 COLD 151.62ms 147.14ms 89.65ms 12.46%
HOT 150.72ms 145.24ms 59.30ms 9.35%

3 COLD 1.27ms 1.17ms 7.32ms 60.14%
HOT 0.58ms 0.57ms 1.50ms 43.59%

2: 1000 × 1000 × 1000 × 311 binary voxels 1 COLD 970.90ms 981.08ms 984.12ms 18.71%
Free-surface fluid simulated by a semi-discrete partial optimal transport algorithm HOT 850.10ms 799.80ms 467.43ms 15.01%

Total size: 1.13TB (1 billion cells per time step) 2 COLD 5377.04ms 5383.19ms 923.28ms 3.69%
HOT 5377.18ms 5429.16ms 1137.92ms 4.83%

3 COLD 1.83ms 1.48ms 3.00ms 51.65%
HOT 0.88ms 0.84ms 4.16ms 34.69%

Table 1: Performance Evaluation Table. These values represent the time to load AMR data in milliseconds (ms) from disk to GPU memory in
three protocols, the first (1) evaluates the time to load a full time step of data, the second (2) the time to load a potential single frame from a
single time step, and (3) the time to load a single AMR brick. Each protocol is evaluated from two data cache states, (COLD) an empty data
cache and (HOT) a full data cache. The notation CV stands for coefficient of variation expressed as a percentage.

(a) Temperature at 47 fps (b) Volume fraction water at 52 fps (c) Volume fraction of asteroid at 43 fps

Figure 10: Visualization of Γ268 with 3 different scalar values from Dataset 1.

frame. We also added dedicated windows to manipulate time se-
ries rendering, transfer function modification, and finally Params
to handle various parameters such as background color and crop
volume. The time series windows allow us to navigate through
the sequence all at once or in small steps during the visualization.
Thanks to our out-of-core mechanism to handle on-the-fly loading
of the AMR data, coupled with our unique identification of each
brick βτ,i,δ by the triplet (timestep, LOD, SFC index), we ensure
dynamic navigation within the time series. Our application allows
the visualization of a BS-AMR sequence by time steps, as shown
in Figure 1, which shows the volume rendering results and perfor-
mance for Dataset 1 on a sample of 4 time steps. We observe dif-
ferent rendering performances between different time steps mainly
because the AMR hierarchy is not static throughout the sequence.
Therefore, if there are fewer bricks in a given time step, the render-
ing algorithm has fewer samples to compute, and the more bricks in
a time step, the more samples are needed. Furthermore, as shown in
Figure 8, we can select the LOD to be rendered for each time step
and improve rendering performance at the expense of render quality
by selecting a coarser resolution, and vice-versa. Similarly, we can
visualize a sequence from binary Dataset 2 on a sample of 4 time
steps at the most visible resolution possible in Figure 9. Figure 10
shows different scalar values of Γ268 from Dataset 1. We achieved
different rendering performances because the resulting AMR hier-
archy of each scalar is related to its refinement threshold during

the preprocessing step. Therefore, having different Card(Γ268) per
scalar value significantly affected the rendering performance for
the same refinement level of a given numerical simulation sequence
data with a static spatial resolution. For a coherent comparison, we
maintain the same level of refinement across different scalar values
to ensure the same brick size at the end of the preprocessing step.
We have implemented three evaluation protocol tests. Each of them
was performed both on a COLD data cache (i.e., starting from an
empty one) to measure the time to load AMR data from memory
disk to GPU memory, and on a HOT data cache (i.e., already full)
to evaluate the same loading time along with cache system updates
(deleting AMR data already in the data cache and replacing it with
new AMR data). We chose to evaluate our BS-AMR sequence with
a brick size of 64³ with respect to the optimal block of voxels re-
lated by [FSK13] to compare both datasets on a common basis,
since they do not share the same spatial resolution.

1. The first protocol evaluates the time it takes our system to load
the entire AMR data from a single time step by loading a random
full time step.

2. The second protocol evaluates the time to render a potential sin-
gle frame from a single time step by requesting a random million
3D positions in the volume from a single time step. With this
configuration, we measure independently of the camera view-
point and with spatially consecutive 3D positions.

3. The last protocol evaluates the time to load a single AMR brick

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

9



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

from disk to GPU memory by loading a random single 3D posi-
tion at random time steps. With this configuration, we measure
the time to load arbitrary AMR data into GPU memory side by
side with absolutely no spatial or temporal coherence (voxels
that are not consecutive in either space or time).

The results of our performance evaluation results are shown in
Table 1. They suggest several remarks:

• The first thing that stands out is the noticeably better perfor-
mance of all three protocols when evaluated on a HOT data
cache, except for Dataset 2 + Protocol 2, where the random
number generator may have improved COLD over HOT. This
is partly explained by the fact that the cache system is already
warmed-up when the data cache is full, so subsequent calls are
already optimized for GPU access memory. To avoid further out-
liers, we will measure the same 3D random positions for both
cases in the future.

• The second point, regarding the first protocol results, we imme-
diately see that Dataset 1 is on average faster to fully load a sin-
gle time step in the data cache compared to Dataset 2. This is
mainly due to the higher refinement level of Dataset 2 compared
to Dataset 1, which means that many more bricks are loaded into
the GPU memory by a factor of 2³.

• The third point, regarding the second protocol results, we see
that it takes ten times longer to load a brick with spatial coher-
ence for Dataset 2 than for Dataset 1. This is partly explained by
the difference in the spatial dimension between the two datasets,
where Dataset 1 is defined in a 512³ cubic size, and Dataset 2 is
defined in a 1024³ cubic size.

• The final point regarding the third protocol result is that with
the COLD data cache, Dataset 1 takes slightly less time to load a
single random brick with no spatial and temporal coherence than
Dataset 2. This is again explained by the larger data structure
traversal for the more refined Dataset2 compared to Dataset 1.

8. Conclusion and future works

We extended the out-of-core approach for static regular voxel
grids to hierarchical AMR time series data. After analyzing our
solution loading performance, we concluded that our approach
is optimal when a BS-AMR sequence has the same number of
refinement levels per scalar value at each time step to ensure
the maximum spatial and temporal coherence between them.
Therefore, the limitation of our approach is that each time step
of a BS-AMR sequence must have the same spatial dimension
throughout the entire time series. Nevertheless, our solution allows
dynamic navigation through a BS-AMR sequence consisting of
a dynamic AMR hierarchy between timesteps. We achieve this
through efficient GPU parallelism of the virtual addressing of our
2D data structure, coupled with our unique addressing of each
AMR brick by the triplet (timestep, LOD, SFC index). In this
paper, we propose a scalable approach for large-scale AMR time
series data. Our approach is defined as a cache system based on
ad-hoc bricking identified by Hilbert’s code indexing and managed
by a 2D addressing data structure. This addressing data structure
loads the required AMR data on the fly from disk to GPU memory.
Our global pipeline starts with a preprocessing step that identifies
each AMR brick by its Hilbert code. Then, we reduce the AMR

hierarchy of a single BS-AMR to a one-dimensional array to
navigate through the temporal dimension within our 2D TS-BAT
architecture. However, at this stage we still lack a virtual memory
mechanism and a preloading method based on an AI approach.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

10



W. Alexandre-Barff et al. / A GPU-based out-of-core architecture for interactive visualization of AMR time series data

References

[BC89] BERGER M. J., COLELLA P.: Local adaptive mesh refinement
for shock hydrodynamics. J. of Computational Physics 82, 1 (May 1989),
64–84. doi:10.1016/0021-9991(89)90035-1. 4

[BHP15] BEYER J., HADWIGER M., PFISTER H.: State-of-the-Art in
GPU-Based Large-Scale Volume Visualization. Computer Graphics Fo-
rum 34, 8 (Dec. 2015), 13–37. doi:10.1111/cgf.12605. 2

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: Gi-
gavoxels: Ray-guided streaming for efficient and detailed voxel render-
ing. In Proc. of the 2009 Symp. on Interactive 3D Graphics and Games
(New York, NY, USA, 2009), I3D ’09, Association for Computing Ma-
chinery, pp. 15–22. doi:10.1145/1507149.1507152. 2, 3

[DCOM00] DAFNER R., COHEN-OR D., MATIAS Y.: Context-based
space filling curves. Computer Graphics Forum 19 (05 2000). doi:
10.1111/1467-8659.00413. 5

[dlAC17] DE LA ASUNCIÓN M., CASTRO M. J.: Simulation of tsunamis
generated by landslides using adaptive mesh refinement on GPU. J. of
Computational Physics 345 (Sept. 2017), 91–110. doi:10.1016/j.
jcp.2017.05.016. 1

[FSK13] FOGAL T., SCHIEWE A., KRÜGER J.: An analysis of scalable
gpu-based ray-guided volume rendering. In 2013 IEEE Symp. on Large-
Scale Data Analysis and Visualization (LDAV) (2013), pp. 43–51. doi:
10.1109/LDAV.2013.6675157. 3, 7, 9

[GABJ08] GOSINK L. J., ANDERSON J. C., BETHEL E. W., JOY K. I.:
Query-driven visualization of time-varying adaptive mesh refinement
data. IEEE Trans. on Visualization and Computer Graphics 14, 6 (Dec.
2008), 1715–1722. doi:10.1109/TVCG.2008.157. 2

[HBJP12] HADWIGER M., BEYER J., JEONG W.-K., PFISTER H.: In-
teractive volume exploration of petascale microscopy data streams us-
ing a visualization-driven virtual memory approach. IEEE Trans. on Vi-
sualization and Computer Graphics 18, 12 (2012), 2285–2294. doi:
10.1109/TVCG.2012.240. 2, 3

[KCP∗02] KAHLER R., COX D., PATTERSON R., LEVY S., HEGE H.-
C., ABEL T.: Rendering the first star in the universe - a case study. In
IEEE Visualization, 2002. VIS 2002. (2002), pp. 537–540. doi:10.
1109/VISUAL.2002.1183824. 2

[KEB∗14] KUMAR S., EDWARDS J., BREMER P.-T., KNOLL A.,
CHRISTENSEN C., VISHWANATH V., CARNS P., SCHMIDT J. A., PAS-
CUCCI V.: Efficient i/o and storage of adaptive-resolution data. In
SC ’14: Proc. of the International Conference for High Performance
Computing, Networking, Storage and Analysis (2014), pp. 413–423.
doi:10.1109/SC.2014.39. 3

[KPHH05] KAEHLER R., PROHASKA S., HUTANU A., HEGE H.-C.:
Visualization of time-dependent remote adaptive mesh refinement data.
In IEEE Visualization, 2005. VIS 2005. (2005), pp. 175–182. doi:10.
1109/VISUAL.2005.1532793. 2

[KWAH06] KAEHLER R., WISE J., ABEL T., HEGE H.-C.: GPU-
Assisted Raycasting for Cosmological Adaptive Mesh Refinement Sim-
ulations. The Eurographics Association, 2006. doi:10.2312/VG/
VG06/103-110. 1

[Lév22] LÉVY B.: Partial optimal transport for a constant-volume la-
grangian mesh with free boundaries. J. of Computational Physics 451
(2022), 110838. doi:10.1016/j.jcp.2021.110838. 7

[LVI∗13] LEAF N., VISHWANATH V., INSLEY J., HERELD M., PAPKA
M., MA K.-L.: Efficient parallel volume rendering of large-scale adap-
tive mesh refinement data. pp. 35–42. doi:10.1109/LDAV.2013.
6675156. 2

[MA15] M. ADAMS P. C.: Chombo Software Package for AMR Appli-
cations - Design Document. Report LBNL-6616E, Lawrence Berkeley
National Laboratory Technical Report, 2015. 4

[Max95] MAX N.: Optical models for direct volume rendering. IEEE
Trans. on Visualization and Computer Graphics 1, 2 (1995), 99–108. 7

[ME11] MORAN P., ELLSWORTH D.: Visualization of amr data with
multi-level dual-mesh interpolation. IEEE Trans. on Visualization and
Computer Graphics 17, 12 (2011), 1862–1871. doi:10.1109/
TVCG.2011.252. 2

[PBS02] PARK S., BAJAJ C., SIDDAVANAHALLI V.: Case study: In-
teractive rendering of adaptive mesh refinement data. pp. 521–524.
doi:10.1109/VISUAL.2002.1183820. 2

[PG17] PATCHETT J., GISLER G.: Deep water impact en-
semble data set. URL:https://sciviscontest2018.org/ wp-
content/uploads/sites/19/2017/09/DeepWaterImpact Ensemble-
DataSet_Revision1.pdf 4 (2017). 1, 7

[PMM16] PANDA S., MISHRA S., MISHRA S.: Study and analysis of
multidimensional hilbert space filling curve and its applications - a sur-
vey. Int. J. of Computer Science, Engineering and Information Tech-
nology 6 (04 2016), 01–09. doi:10.5121/ijcseit.2016.6201.
2

[SCRL20] SARTON J., COURILLEAU N., REMION Y., LUCAS L.: In-
teractive Visualization and On-Demand Processing of Large Volume
Data: A Fully GPU-Based Out-of-Core Approach. IEEE Trans. on
Visualization and Computer Graphics 26, 10 (Oct. 2020), 3008–3021.
doi:10.1109/TVCG.2019.2912752. 2, 3, 6

[SDS15] SASIDHARAN A., DENNIS J. M., SNIR M.: A general space-
filling curve algorithm for partitioning 2d meshes. In 2015 IEEE 17th
Int. Conf. on High Performance Computing and Communications (2015),
pp. 875–879. doi:10.1109/HPCC-CSS-ICESS.2015.192. 2

[SZM∗14] SHIH M., ZHANG Y., MA K.-L., SITARAMAN J.,
MAVRIPLIS D.: Out-of-core visualization of time-varying hybrid-grid
volume data. In 2014 IEEE 4th Symp. on Large Data Analysis and Vi-
sualization (LDAV) (Nov 2014), pp. 93–100. doi:10.1109/LDAV.
2014.7013209. 2

[Wal20] WALD I.: A simple, general, and gpu friendly method for com-
puting dual mesh and iso-surfaces of adaptive mesh refinement (amr)
data. ArXiv abs/2004.08475 (2020). 2

[WGLS05] WANG C., GAO J., LI L., SHEN H.-W.: A multiresolution
volume rendering framework for large-scale time-varying data visual-
ization. In 4th Int. Workshop on Volume Graphics, 2005. (2005), IEEE,
pp. 11–223. 3

[WHJ∗01] WEBER G., HAMANN B., JOY K., LIGOCKI T., MA K.-L.,
SHALF J.: Visualization of adaptive mesh refinement data. vol. 4302,
pp. 121–132. doi:10.1117/12.424922. 2

[WKL∗01] WEBER G., KREYLOS O., LIGOCKI T., SHALF J.,
HAMANN B., JOY K., MA K.-L.: High-quality volume rendering of
adaptive mesh refinement data. Vision, Modeling & Visualization 522
(01 2001), 121–128. 2

[WMU∗20] WANG F., MARSHAK N., USHER W., BURSTEDDE C.,
KNOLL A., HEISTER T., JOHNSON C.: CPU Ray Tracing of Tree-Based
Adaptive Mesh Refinement Data. Computer Graphics Forum 39 (June
2020), 1–12. doi:10.1111/cgf.13958. 2

[WZU∗21] WALD I., ZELLMANN S., USHER W., MORRICAL N., LANG
U., PASCUCCI V.: Ray tracing structured amr data using exabricks.
IEEE Trans. on Visualization and Computer Graphics 27, 2 (2021), 625–
634. doi:10.1109/TVCG.2020.3030470. 2

[YMW04] YU H., MA K.-L., WELLING J.: I/O Strategies for Par-
allel Rendering of Large Time-Varying Volume Data. In Eurograph-
ics Workshop on Parallel Graphics and Visualization (2004). doi:
10.2312/EGPGV/EGPGV04/031-040. 2

[ZJW21] ZHOU L., JOHNSON C. R., WEISKOPF D.: Data-driven space-
filling curves. IEEE Trans. on Visualization and Computer Graphics 27,
2 (2021), 1591–1600. doi:10.1109/TVCG.2020.3030473. 2

[ZWS∗22] ZELLMANN S., WALD I., SAHISTAN A., HELLMANN M.,
USHER W.: Design and Evaluation of a GPU Streaming Framework for
Visualizing Time-Varying AMR Data. In Eurographics Symp on Parallel
Graphics and Visualization (2022). doi:10.2312/pgv.20221066.
2, 7

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

11

https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1111/cgf.12605
https://doi.org/10.1145/1507149.1507152
https://doi.org/10.1111/1467-8659.00413
https://doi.org/10.1111/1467-8659.00413
https://doi.org/10.1016/j.jcp.2017.05.016
https://doi.org/10.1016/j.jcp.2017.05.016
https://doi.org/10.1109/LDAV.2013.6675157
https://doi.org/10.1109/LDAV.2013.6675157
https://doi.org/10.1109/TVCG.2008.157
https://doi.org/10.1109/TVCG.2012.240
https://doi.org/10.1109/TVCG.2012.240
https://doi.org/10.1109/VISUAL.2002.1183824
https://doi.org/10.1109/VISUAL.2002.1183824
https://doi.org/10.1109/SC.2014.39
https://doi.org/10.1109/VISUAL.2005.1532793
https://doi.org/10.1109/VISUAL.2005.1532793
https://doi.org/10.2312/VG/VG06/103-110
https://doi.org/10.2312/VG/VG06/103-110
https://doi.org/10.1016/j.jcp.2021.110838
https://doi.org/10.1109/LDAV.2013.6675156
https://doi.org/10.1109/LDAV.2013.6675156
https://doi.org/10.1109/TVCG.2011.252
https://doi.org/10.1109/TVCG.2011.252
https://doi.org/10.1109/VISUAL.2002.1183820
https://doi.org/10.5121/ijcseit.2016.6201
https://doi.org/10.1109/TVCG.2019.2912752
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.192
https://doi.org/10.1109/LDAV.2014.7013209
https://doi.org/10.1109/LDAV.2014.7013209
https://doi.org/10.1117/12.424922
https://doi.org/10.1111/cgf.13958
https://doi.org/10.1109/TVCG.2020.3030470
https://doi.org/10.2312/EGPGV/EGPGV04/031-040
https://doi.org/10.2312/EGPGV/EGPGV04/031-040
https://doi.org/10.1109/TVCG.2020.3030473
https://doi.org/10.2312/pgv.20221066

